- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Chang, Young Hwan (2)
-
Aberle, Denise (1)
-
Achilefu, Samuel I. (1)
-
Ademuyiwa, Foluso O. (1)
-
Adey, Andrew C. (1)
-
Aft, Rebecca L. (1)
-
Agarwal, Rachana (1)
-
Aguilar, Ruben A. (1)
-
Alikarami, Fatemeh (1)
-
Allaj, Viola (1)
-
Amos, Christopher (1)
-
Anders, Robert A. (1)
-
Angelo, Michael R. (1)
-
Anton, Kristen (1)
-
Ashenberg, Orr (1)
-
Aster, Jon C. (1)
-
Babur, Ozgun (1)
-
Bahmani, Amir (1)
-
Balsubramani, Akshay (1)
-
Barrett, David (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cells interact as dynamically evolving ecosystems. While recent single-cell and spatial multi-omics technologies quantify individual cell characteristics, predicting their evolution requires mathematical modeling. We propose a conceptual framework—a cell behavior hypothesis grammar—that uses natural language statements (cell rules) to create mathematical models. This enables systematic integration of biological knowledge and multi-omics data to generate in silico models, enabling virtual “thought experiments” that test and expand our understanding of multicellular systems and generate new testable hypotheses. This paper motivates and describes the grammar, offers a reference implementation, and demonstrates its use in developing both de novo mechanistic models and those informed by multi-omics data. We show its potential through examples in cancer and its broader applicability in simulating brain development. This approach bridges biological, clinical, and systems biology research for mathematical modeling at scale, allowing the community to predict emergent multicellular behavior.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Rozenblatt-Rosen, Orit; Regev, Aviv; Oberdoerffer, Philipp; Nawy, Tal; Hupalowska, Anna; Rood, Jennifer E.; Ashenberg, Orr; Cerami, Ethan; Coffey, Robert J.; Demir, Emek; et al (, Cell)
An official website of the United States government
